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Hyperfast travel in general relativity
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The problem is discussed of whether a traveler can reach a remote object and return sooner than a photon
would when taking into account that the traveler can partly control the geometry of his world. It is argued that
under some reasonable assumptions in globally hyperbolic space-times the traveler cannot hasten reaching the
destination. Nevertheless, it is perhaps possible for the traveler to make an arbitraritguogtrip within an
arbitrarily short(from the point of view of a terrestrial obserydime. [S0556-282(98)03906-X

PACS numbds): 04.20.Gz, 04.20.Cv

[. INTRODUCTION as follows: Is it possible that the spaceship will reach Deneb
and then return to the Earth v’ <A7:? By “possible”
Everybody knows that nothing can move faster than lightwe mean “possible, at least in principle, from the causal
The regrettable consequences of this fact are also wefloint of view.” The use of tachyons, for example, enables,
known. Most of the interesting or promising candidates foras is shown irf1], even a nontachyonic spaceship to hasten
colonization are so distant from us that the light barrierits arrival. Suppose, however, that tachyons are forbidden
seems to make an insurmountable obstacle for any expedivell as all other means for changing the metric with violat-
tion. It is, for example, 200 pc from us to the Polar star,ing what we call below “utter causality). The main result
500 pc to Deneb, and 10 kpc to the center of the Galaxy, of the paper is the demonstration of the fact that even under
not to mention other galaxiehundreds of kiloparsegslt  this condition the answer to the above question is positive.
makes no sense to send an expedition if we know that thouMoreover, in some casdw/hen global hyperbolicity is vio-
sands of years will elapse before we receive its report. On thiated event,, can be lessened.
other hand, the prospects of being confined forever to the
Solar system without any hope of visiting other civilizations Il. CAUSAL CHANGES
or examining closely black holes, supergiants, and other
marvels are so gloomy that it seems necessary to search for
some way out. In this section we make the question posed in the Intro-
In the present paper we consider this problem in the conduction more concrete. As the point at issue is the effects
text of general relativity. Of course the light barrier exists caused bynodifying the (four-dimensional) worlthat is, by
here too. The point, however, is that in general relativity onechanging its metric or even topologyne may immediately
can try to change the time necessary for some travel not onlyisk, Modifying from what? To clarify this point first note
by varying one’s speed but also, as we shall show, by changhat though we treat the geometry of the world classically
ing the distance one is to cover. throughout the papefthat is, we describe the world by a
To make the question more specific, assume that we emgpace-time, i.e., by a smooth Lorentzian connected globally
a beam of test particles from the Earth to Derféfe event inextendible Hausdorff manifojdno special restrictions are
S). The particles move with all possib(subluminal speeds imposed for a while on matter fieldand thus on the right-
and by definition do not exert any effect on the surroundinghand side of the Einstein equation#n particular,it is not
world. The beam reaches Dengfith the arrival time of the implied that the matter fields (or particles) obey any specific
first particlet, by Deneb'’s clocky reflects there from some- classical differential equations.
thing, and returns to the Earth. Denote by, (7 is the Now consider an experiment with two possible results.
Earth’s proper timg the time interval betweers and the Example 1A device set on a spaceship first polarizes an
return of the first particlelthe eventR). The problem of electron in they direction and then measures tkecompo-
interstellar travel lies just in the large typicAl,. Itis con-  nent of its spinoy,. If the result of the measurement ds,
ceivable of course that a particle will meet a traversible= 4+ 1/2, the device turns the spaceship to the right; otherwise
wormhole leading to Deneb or an appropriate distortion ofit does not.
space shortening its wagee[1] and example 4 belowbut Example 2.A device set on dvery massivg spaceship
one cannot hope to meet such a convenient wormhole eagbsses a coin. If it falls on the reverse the device turns the
time one wants to travelunless one makes them oneself, spaceship to the right; otherwise it does not.
which is impossible for theéestparticleg. Suppose now that CommentOne could argue that example 2 is inadequate
instead of emitting the test particles we launch a spaceshigince(due to the classical nature of the experimehere is
(i.e., something that does act on the surrounding gpacs. actuallyonepossible result in that experiment. That is indeed
Then the question we discuss in this paper can be formulatettie case. However, let 5 assume that before being tossed
the coin had never interacted with anything dnd neglect
the contribution of the coin to the metric of the world. Of
*Electronic address: redish@pulkovo.spb.su course, itemg(i) and (i) constitute anapproximationand

A. Changes of space-time
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situations are conceivable for which such an approximatiorflocated in, say, poird) cannot act on events lying off one’s
is invalid [e.qg., item(i) can be illegal if the same coin was “causal future” [i.e., off J*(A)]:

already used a lot in another experiment involving large (i) Matter fields are conceivable that while satisfying local
massep We do not consider such situations. At the samecausality themselves do not provide local causality to the
time if (i) and (i) are adopted, experiment 2 can well be metric. In other words, they afford a unique solution to the
considered as an experiment with two possible red(itis Cauchy problem for the metric, not B (P) (cf. Chap. 7 in

coin, in fact, is unobservable before the experiment [2]), but in some smaller region only. In the presence of such
Both situations described above suffer some lack of defields the metric at a poirB might depend on the fields at

termjnism (originating from the.quantum indeterminis'm' in points outsidel™ (B). That is, the metric itself would act as
the first case and from coarsening the classical description i tachvon field in such a case

the second Namely, the spaceship is described now by a™ .. y : L : .
body whose evolution is not fixed uniquely by the initial data ("l Let M, be the Mka\.NSk' space Wlth coordlr;ates
(in other words, its trajectorynonanalytic, though smooth  (t1:X1) and M, be a space-time with foordlnatesz x2)

is no longer a solution of any “good” differential equatipn @nd with the metric flat at the regiox;>t,, but nonflat
However, as stated above, this does not matter much.  Otherwise(such a space-time describes, for example, propa-

So, depending on which result is realized in the experi-gation of a plane electromagnetic wawvéntuition suggests
ment(all other factors being the same; see belowr world  that difference betweel ; andM, cannot be ascribed to the
must be described by one tfo different space-timedt is  activity of an observer located in the origin of the coordi-
the comparison between these two space-times that we amates, but neither local causality nor any other principle of
interested in. general relativity forbids such an interpretation.

Notation.Let M; andM, be two space-times with a pair  In the model we construct we want to abandon any pos-
of inextendible timelike curves;,D;CM; in each(through-  sibility of such “acausal” action on the metric. In other
out the papeti,j=1,2). One of these space-timéd, say, words, we want the condition relatifg ; and M, to imply
describes our world under the assumption that we emit teghat these worlds are the same in events that cannot be caus-

particles at some momer8, € £; and the other under the g)ly connected t&. This requirement can be called then-
assumption that instead of the particles we launch a Spacgiple of utter causality

ship inS,, whereS, e M, corresponds in a senggee below
to S;. The curvest; andD; are the world lines of Earth and
Deneb, respectively. We require that the two pairs of points
exist: In this section we formulate the condition relatiMy, to
. N M,. Namely, we require tha¥l; should “diverge byS” (see
Fi=Bd[J7(S)IND;, R=BA[J"(F)INE&. (1)  pelow. It should be stressed that from the logical point of

These points mark the restrictions posed by the light barrief <" this condlt'lon IS just ephysmal postulateBelung con- Y
erned only with the relation between two ‘“possible

in each space-time. Nothing moving with a subluminal spee : X
P 9 9 P worlds, this new postulate does not affect any previously

in the worldM; can reach Deneb sooner thanHpor return - .
: - known results. In defense of restrictions imposed by our pos-
to Earth sooner than iR;. What we shall study is just the . .
tulate onM; we can say that it does not contradict any

relative positions o5, ,F,,R; for i=1,2 when the difference . .
) X . known facts. Moreover, in the absence of tachyfinsthe
in the space-time®1; andM,, is of such a naturébelow we o o -

broad sense, see itefr) abovq it is hard to conceive of a

formulate the necessary geometrical critejithmat it can be ; IR
mechanism violating it.

completely ascribed to the pilot's activity afté Formulating the condition being discussed, we would like
_ to base it on the “principle of utter causality.” In doing so,
B. “Utter causality” however, we meet a circle: To find out whether a point is
The effect produced by the traveler on space-time neegausally connected t§ we must know the metric of the
not be weak. For example, by (eelatively) small expendi- space-timeM;, while the metric at a point depends in turn
ture of energy the spaceship can break the equilibrium i®n whether or not the point can be causally connectes to
some close binary system on its way, thus provoking thelhat is why we cannot simply require th&t;\J"(S) be
collapse. The causal structuresMf, andM, in such a case isometric. The following example shows that this may not be
will differ radically. If an advanced civilizatiorito which it ~ the case even when utter causality apparently holds.
is usual to refer will cope with topology changes, it may Example 3: “Hyperjump.”Let M; be the Minkowski
turn out thatM ; andM, are even nondiffeomorphic. So the plane withS; located at the origin of the coordinates and let
space-times being discussed may differ considerably. On thi, be the space-timésimilar to the Deutsch-Politzer space
other hand, we want them to be rntob different. obtained fromM, by the following procedurésee Fig. 1
(a) The pilot of the spaceship deciding@&whether or not  Two cuts are made, one along a segrmielying in 17(S;)
to fly to Deneb knows the pilot’s past and in our model weand another along a segmdritlying off J*(S;) and ob-
would prefer that the pilot’'s decision could not change thistained froml by a translation. The four points boundihg’
past. This restriction is not incompatible with the fact that theare removed and the lowéor the left, if| is vertica) bank
pilot can make different decisiorisee the preceding subsec- of each cut is glued to the uppéor to the righj bank of the
tion). other. Note that we can vary the metric in the shadowed
(b) The absence of tachyoffise., fields violating the pos- region without violating utter causality though this region
tulate of local causality2]) does not mean in itself that one “corresponds” to a part oM \J*(S,).

C. Relating condition
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} N /,;,’.:"' FIG. 2. Make cuts along the thin lines on the cylinder at the left
! and glue their banks to obtain the “trousers” at the right. The
! shadowed regions depidt (S). Note that these space-times cannot
S2 be considered as diverging I8/ If we take, for example, the whole
FIG. 1. “Hyperjump.” The thick dashed line depicts an allowed M; with the thin lines removed, al;, then BdN;> BxC, while
world line of a spaceship. neitherB nor C lies in J.

To overcome this circle we shall formulate our relating depicted in Fig. 2A#B, but A~B). Now, if we want to
condition in terms of the boundaries of the “unchanged” consider topology changes like that in Fig. 2 as possibly
regions. produced by the even$, we can replace Eq2) by the

Notation.Below we deal with two regionll; CM; related  requirement that for any first type poifte Bd N;,
by an isometry¢: N,=@(N4). To shorten notation we
shall write sometimeX 4 for a subseXCN; and X, for
¢(X). The notatiorAxB for pointsA,B will mean that there
exists a sequenc@,},

[Ql-NJ#J, 3

where[ Q] _={x|x~Q}. It is worth pointing out that replac-

ani—A, anj—B. ing Eq. (2) by Eq. (3) does not actually affect any of the
statements below.
Clearly if Ae N4, then AxB#A means simplyB= ¢(A). Now we can formulate the question posed in the Introduc-
Finally, J=J"(S)UJ*(Sy). tion as follows: Given that the space-timkk diverged by

Definition 1. We call space-time#;,M, diverging by an eventS, how will the pointsF,,R, be related to the
the event $(or by S, or simplyby S if there exist open sets points F;,R;? [It is understood from now on thaf, N,
N;CM;, pointsS;, and an isometrys>: N;—N, such that =@(C;NNy), whereC;=D;, & .]
17(S)=¢[1"(S)] and

(QUQWNI#J 2 lIl. ONE-WAY TRIP

Example 3 shows that contrary to what one might expect,
utter causality by itself does not prevent a pilot from hasten-
ing the arrival at a destination. It is reasonable to suppose,

wheneverQ; e Bd N; andQj*Q,# Q.

Comment.In the example considered above the two
space-tlmes dlverged . Note the foIIowmg.Q) Th.e pos- however, that in less “pathological” space-tinidhis is not
sible choice ofN; is not unique. The dotted lines in Fig. 1 the case.
bound frq_m above two different regions thqt can be chosen Proposition 1.1f M; are globally hyperbolic space-times
as Np. (i) A)<B(; does not necessarily implA diverging bysS, then
<Byy). (iii) Points constituting the boundary df fall into '
two types, some have counterpati®., points related to
them by x) in the other space-time and the others do not
(corresponding thus to singularitjedt can be shown(see . . . .
Lemma 1 in the Appendixthat the first type points form a The proof of this .seem|'ngly self-ewc!en.t proposmon has
dense subset of BN turned out to be quite t_edlous, S0 we cite it in the Appendix.

In what follows we proceed from the assumption that the Example 4Rece.ntly It was p.ropose[cl] tc_> use f_or hyper-
condition relating the two worlds is just that they are de-fast travel the metri¢l omit two irrelevant dimensiong and
scribed by space-times diverging By(with N; correspond- z)
ing to the unchanged regiondt should be noted, however,
that this condition is tentative to some extent. It is not im- ds?=—dt?+[dx—vf(rg)dt]2 (4
possible that some other conditions may be of interest, more
restrictive than ourge.g., we could put some requirements
on points of the second typer, on the contrary, less restric-  Note that we discuss the causal structure only. So the fact that
tive. The latter can be obtained, for example, in the followingthere are singularities in the space-time from example 3 is irrel-
manner. The relatiomn is reflective and symmetric, but not evant. As is shown ifi3], a singularity-free space-time can be con-
transitive. Denote by- its transitive closurée.g., in the case structed with the same causal structure.

Fl*FZ'
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Hererg=|x—x¢|, vg(t)=dx(t)/dt, andx¢(t) andf are ar-
bitrary smooth functions satisfying

D
0

att>T

XS(t):[ att<o0,

1
0

forée (—R+6,R—9)

f(g):[ foré¢(—R,R) .

8, T, andR are arbitrary positive parameters.

To see the physical meaning of the condition of utter cau-

sality take the Minkowski plane a1, and the plane en-
dowed with the metri¢4) asM, (we choose the origins to be
S). It is easy to see that the curwe=[t,x((t)] is timelike
with respect to the metri¢4) for any x4(t). So we could

conclude that an astronaut can travel with an arbitrary veloc-

ity [“velocity” here is taken to mean the coordinate velocity
dx,(t)/dt, wherex,(t) is the astronaut’s world lineAll one
needs is to choose an appropriatgt) and to make the
metric be of form(4) with x4(t) = x,(t). The distortion of the
space-time in the regiof0<x<D, t>0} of M, will allow
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FIG. 3. Warp drive.

the astronaut to travel faster than one could have done in the Example 5: “The warp drive."Consider the metric

flat spaceM, (which does not of course contradict Proposi-

tion 1 since theM; do not diverge byS).
The subtlety lies in the words “to make the metric
be ... .” Consider the curve , =[t,x4(t) + R], which sepa-

d?=— (dt—dx)[dt-+k(t,x)dx],

where k=1—(2-6)0(t—Xx)[ 0.(x) — 6.(x+e—D)]. Here

rates the flat and the curved regions. It is easy to see thdt denotes a smooth monotone function

vg(t)>1 when and only whemn ,(t) is spacelike. At the

same time Eq(19) of [1] says that the space immediately to

the left of A, is filled with some matter §°°+0)2 The
curvel . (t) is thus the world line of the leading edge of this

1
0

até>e

0(8)= até<o,

matter. We come therefore to the conclusion that to achievé€ ande<D being arbitrary small positive parameters.
T<D the astronaut has to use tachyons. This possibility is Three regions can be recognizedNh (see Fig. 3 the
not too interesting: no wonder that one can overcome théutside region{x<0}U{x>D}U{x>t}, in which the met-
light barrier if one can use the tachyonic matter. Alterna-fic is flat (k=1) and future light cones are generated by
tively, in the more general case, when the space-time is nortectorsro=d;+dy and lo=d;—dy; the transition region,
flat from the outset, a similar result could be achieved with-which is a narrow(of width ~€) strip shown as a shaded
out tachyons by placinin advancesome devices along the region in Fig. 3 in which the space-time is curved; ahd
pilot's way and programming them to come into operation atinside region{x<t—e}N{e<x<D— e}, which is also flat
preassigned moments and to operate in a preassigned md#=6—1), but the light cones are “more open” here being
ner. Take the momer® when we began placing the devices generated by, = d;+ d, andl; = — (1— 6) d;— 5. The vector

as a point diverging the space-times. Proposition 1 showk is almost antiparallel to, and thus a photon moving from
then that, though a regular spaceship service perhaps can betoward the left will reach the line=0 almost inS.
set up by this means, it does not help to outdistance the test We see thus that an arbitrarily distant journey can be

particles fromM in the first flight (i.e., in the flight that
would start atP).

IV. ROUND-TRIP

The situation with the pointB; differs radically from that
with F; since the segmefR belongs tal* (S) for sure. So

made in an arbitrarily short time. It can look like the follow-

ing. In 2000, say, an astronaut, whose world line is shown as
a bold dashed line in Fig. 3, starts to Deneb. The astronaut
moves with a near light speed and the way to Deneb takes
the (prope) time A 7,<1600 yr. On the way he or she carries

out some manipulations with the ballast or with the passing
matter. In spite of these manipulations the traveler reaches

even in globally hyperbolic space-times there is nothing taDeneb at 3600 only. However, on the way back the traveler
prevent an astronaut from modifying the metric so as tdfinds that the metric has changed and he or she moves

moveR closer toS (note that from the viewpoint of possible

“backward in time,” that is,t decreases as Earth is ap-

applications to interstellar expeditions this is far more impor-proachedthough the traveler’s trajectory, of courseftisure

tant than to shiffF). Let us consider two examples.

2In [1] anotherf was actually used. Our modification, however, in
no way impairs the proposed spaceship.
3The case in point is, of course, a four-dimensional space.

directed. As a result, the traveler returns to Earth in 2002.
Example 6: WormholeYet another way to return arbi-
trarily soon after the start by changing geometry is the use of
wormholes. Assume that we have a wormhole with a negli-

gibly short throat and with both mouths restingar Earth.
Assume further that we can move any mouth at will without
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changing the “inner” geometry of the wormhole. Let the creasing blueshift. The terms in the stress-energy tensor as-
astronaut take one of the mouths with him or her. If he or shesociated with nontrivial topology also experience this
moves with a near light speed, the trip will take only the blueshift [10]. As a result, in the vicinity of the Cauchy
short time A 7, for the traveler. According to our assump- horizon (even when a region we consider is flat and is lo-
tions, the clocks on Earth as seen through the throat wiltated far from either moujtthe behavior of the energy den-
remain synchronized with the astronaut’s and the throat wilkity has nothing to do with what one could expect from the
remain negligibly short. So, if immediately after reaching “almost Minkowski” approximation[11]. (The difference is
Deneb he or she returns to Earth through the wormhole’so great thabeyondthe horizon we cannot use the known
throat, it will turn out that he or she will have returned within quantum field theory, including its methods of evaluating the
A 1g~A T, after the start. energy density, at afl12].) Consider, for example, the Mis-
Similar things were discussed many times in connectiomer space with the massless scalar field in the conformal
with the wormhole-based time machine. The main technicalacuum state. From the results of Sec. II[H] it is easy to
difference between a time machine and a vehicle under corsee thatE[\, 7y, ]=— for any X and 7y and the QI thus
sideration is that in the latter case the mouth only movesioes not hold heréMoreover,E[\, 7, T]— — as one ap-
away from Earth. So causality is preserved and no difficul-proaches the Cauchy horizon alongSo we need not actu-
ties arise connected with its violation. ally create a time machine to violate the QI. It would suffice
to “almost create” it. Thus it well may be that in spite @ir
owing to) the use of a wormhole the space machine consid-
ered in example 6 will turn out to be more realistic than that
In all examples considered above the pilot, roughly speaki example 5.
ing, “transforms” an “initially” spacelike (or even past- (if) Then there are noncompact space machines, as in ex-
directed curve into a future-directed curve. Assume nowample 3. Theseeven their singularity free versions; see
that one applies this procedure first to a spacelike curvé3,13)) do not necessitate violations of the weak energy con-
(AC,B) and then to another spacelike cunB@,A) lying  dition. They have, however, another drawback typical for
in the intact, until then, region. As a result one obtains afime machines. The evolution of nonglobally hyperbolic
closed timelike curve AC,BC,A) (see[4—6] for more de- SPace-times is not understood _clearly enough and so we do
tails). So the vehicles in discussion can be in a sense considlot know how toforce a space-time to evolve in the appro-
ered as “square roots” of time machirfand thus a collec- Priate way. There is an example, howey#re wormhole-
tive name space machine-also borrowed from science based time machingl4]), where the space-time is denuded
fiction—seems most appropriate for therThe connection ©f its global hyperbolicity by quite conceivable manipula-
between time and space machines allows us to classify tHéons, which gives us some hope that this drawback is actu-
latter under two types. ally not fatal.
(i) The first are those leading to time machines with com-
pactly generated Cauchy horizofexamples 4—6 From the ACKNOWLEDGMENTS
results of[ 7] it is clear that the creation of a space machine
of this type requires violation of the weak energy condition. | am grateful to D. Coule, A. A. Grib, G. N. Parfionov,
The possibility of such violations is restricted by the so-and R. R. Zapatrin for useful discussion. This work was par-
called quantum inequalitie$Qls) [8]. In particular, with the ~tially supported by RFFI grant 96-02-19528.
use of a QI it was shown if5] that to create a four-
dimensional analog of our example 5 one needs huge APPENDIX
amounts(e.g., 16?M g,jax,) of “negative energy.” Thermo-
dynamical considerations suggest that this in its turn neces- Throughout this section we také; to be globally hyper-
sitates huge amounts of “usual” energy, which makes thedolic space-times diverging I, and U); to meanU\J for
creation unlikely. This conclusion is quite sensitive to theany setU.
details of the geometry of the space machine and one could Lemma 1.Let O be a neighborhood of a point of B
try to modify its construction so as to obtain more appropri-andONCONN; be such an open nonempty set that
ate values. Another way, however, seems more promising.
The QI used iff5] was derived with the constraisee[8]) Bd ONNOCBd N;. (A1)
that in a region with the radius smaller than the proper radius
of curvature space-time is “approximately Minkowski” in Then
the sense that the energy dendity be more precise, the
integral E[X, ToaT]EfI?O<TMVU”UV>.(7'2+ %) "1 dr, where Bd ON;,NJ*(S)# D
\ is a timelike geodesic parametrized by the proper time
u=4,, andrg is a “sampling time”) is given by essentiall . i : .
the same e>?pression ars) ingthe Minko%vski sp))/ace. So, ir}1/ de- Prgof. Letj=1 for defmltepess. Cons_@er a smooth mani-
signing space machines, space-times are worth searching fsld M=MU /O, where¢' is the restriction o) on oM.
where this constraint breaks down. Induce the metric oM by the natural projections
Among them is a “critical” (i.e., just before its transfor-
mation into a time machinavormhole. Particles propagating
through such a wormhole again and again experignee 41t is most likely (see Sec. IV of7]) that the same is true in the
gardless of specific properties of the wormh@@) an in-  four-dimensional case as well.

V. DISCUSSION

for somei.
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o« A (otherwise by[2], Proposition 4.5.10 and by causal convex-
ity of Vo, we could deform it into a timelike curve lying in
N1NV,ar, while CeW).

Now note that for anyC' e 1~ (C,N;) there exists a sub-
sequence y,} lying in 17(C’,N;). So by Eq.(A3) a se-
quence of point$¢b,,} and a poinB; can be found such that

b,—B;eBd Ny, byel (A’,N)NI*(C’,Ny).
(A4)
Thus the¢(by,) lie in a compact sef™ (Ap,))NJI*(C(,)
and therefore

(,b(bm)—>Bz Bl*BZ'

From Definition 1 it follows that at least one of tig lies in
J*(S) and sinceB; e “(A)) we arrive at a contradiction.

(i) IWCBd N;. In this case takin@®@=1"(A',V,/) and
ON=W in Lemma 1 yields

—_ _
FIG. 4. Casdi) of Lemma 2. The white area does not belong to WiNJI™(S)#L  for somei,

N, and the darkest areaV§. If instead of the larger area bounded

which gives a contradiction again sing&;,CI (As). W
by a dashed line we take the smaller oné/as, we get casdii). 9 9 e ( ('))

Consider now the sets;={x|I “(x)CN;}. They have a
few obvious features

e My, O Li=IntL;, IntLiCN;j, (A5)

(or, more precisely, byr, %) thus makingM into a Lorent- Ameltds = Agella (A6)

zian manifold andm; into isometrical embedding$d must ~Combining Lemma 2 with EqSA5) and (A6) we obtain

be non-Hausdorff since otherwise it would be a space-time (Bd L);CBd N, (A7)
and so(asMZQM) M, would have an extension in contra- . '
diction to its definition. So pointg; exist: Lemma 3(L;);=(M;);.

N N Proof. Since (M), is connected and (lIrt;); is nonempty
Q:1*Qy, Q:eBdO;;)NO, Q,eBdOp (A2)  [e.g., from Definition U~ (S)C(Int L;),] it clearly suffices
to prove that (Bd.;);=<. To obtain a contradiction, sup-

and the lemma follows now from Definition 1 coupled with pose that there exists a poi (Bd L,); and letU be such

Eq. (AL). ighborhood oA that
Lemma 21f both A, lie in (N)),, then so dd ~(Ag). o o oroormoed onina
Proof. M; are globally hyperbolic. So any poi® has LTC(Ml)],.

such a neighborhoog@ve shall denote it byp) that, first, is
causally convex, i.e.J”(x)NJ*(y)CVp for any points Then forut=UNInt L, it holds that
X,y: yed (x,Vp), and, second, lies in a convex normal I

neighborhood oP. Now suppose the lemma were false. We UsNd*(s)=2, i=12
could find then such a poit’ e 1~ (A ,N;) (leti=1, for

. P 1 (Ag N ( On the other hand, because of E¢a5) and (A7) we can
definitenespthat N L

takeO=U andO™=U" in Lemma 1 and get
W#I17(A",Vpr), __
C Ao+ ;
whereW=1"(A’,N;NV,,). Denote BAWN I~ (A’,V,.) by UiNJ'(S)#Q  for somel,
dW. Clearly @+ dWCN,. So let us consider the two pos- which is a contradiction. ]
sible casegsee Fig. 4 _ N _ Corollary 1.[1%(&) 1= {1 T (ED 1}

() JWEZBd N;. Under this condition a poin€ and a Proof of Proposition 1. M is causally simple. Hence a
sequence of causal curvgg,} from A’ to pointsc, exist  segment of null geodesic fro§) to F; exists. By[2], Propo-
such that sition 4.5.10 this implies that any poi;, e (&); can be

YaCW, c,—CedWNN;. connected toF; by a timelike curve. Hence a poirf’

_ - _ € (D), can be reached frof ;) by a timelike curve without
According to[15], Proposition 2.19, there exists a causalintersectingd ™ (S;). ThusF; is the future end point of the
curve y connectingA’ andC, which is limit for {y,} and is curve D! :
lying thus in W. Since V,, belongs to a normal convex
neighborhood andCel~(A’,Va:), y by [2], Proposition D/ =DN[17(&)];.

4.5.1is not a null geodesic and hence At the same time from Corollary 1 it follows that(D;)
y& N, (A3) =D, m
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