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Hyperfast travel in general relativity

S. V. Krasnikov*
The Central Astronomical Observatory at Pulkovo, St. Petersburg 196140, Russia

~Received 22 July 1997; published 12 March 1998!

The problem is discussed of whether a traveler can reach a remote object and return sooner than a photon
would when taking into account that the traveler can partly control the geometry of his world. It is argued that
under some reasonable assumptions in globally hyperbolic space-times the traveler cannot hasten reaching the
destination. Nevertheless, it is perhaps possible for the traveler to make an arbitrarily longround-trip within an
arbitrarily short~from the point of view of a terrestrial observer! time. @S0556-2821~98!03906-X#

PACS number~s!: 04.20.Gz, 04.20.Cv
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I. INTRODUCTION

Everybody knows that nothing can move faster than lig
The regrettable consequences of this fact are also
known. Most of the interesting or promising candidates
colonization are so distant from us that the light barr
seems to make an insurmountable obstacle for any exp
tion. It is, for example, 200 pc from us to the Polar st
500 pc to Deneb, and;10 kpc to the center of the Galaxy
not to mention other galaxies~hundreds of kiloparsecs!. It
makes no sense to send an expedition if we know that th
sands of years will elapse before we receive its report. On
other hand, the prospects of being confined forever to
Solar system without any hope of visiting other civilizatio
or examining closely black holes, supergiants, and ot
marvels are so gloomy that it seems necessary to searc
some way out.

In the present paper we consider this problem in the c
text of general relativity. Of course the light barrier exis
here too. The point, however, is that in general relativity o
can try to change the time necessary for some travel not
by varying one’s speed but also, as we shall show, by cha
ing the distance one is to cover.

To make the question more specific, assume that we e
a beam of test particles from the Earth to Deneb~the event
S). The particles move with all possible~sub!luminal speeds
and by definition do not exert any effect on the surround
world. The beam reaches Deneb~with the arrival time of the
first particletD by Deneb’s clocks!, reflects there from some
thing, and returns to the Earth. Denote byDtE (tE is the
Earth’s proper time! the time interval betweenS and the
return of the first particle~the eventR). The problem of
interstellar travel lies just in the large typicalDtE . It is con-
ceivable of course that a particle will meet a traversi
wormhole leading to Deneb or an appropriate distortion
space shortening its way~see@1# and example 4 below!, but
one cannot hope to meet such a convenient wormhole e
time one wants to travel~unless one makes them onese
which is impossible for thetestparticles!. Suppose now tha
instead of emitting the test particles we launch a space
~i.e., something that does act on the surrounding space! in S.
Then the question we discuss in this paper can be formul
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as follows: Is it possible that the spaceship will reach Den
and then return to the Earth inDt8,DtE? By ‘‘possible’’
we mean ‘‘possible, at least in principle, from the cau
point of view.’’ The use of tachyons, for example, enable
as is shown in@1#, even a nontachyonic spaceship to has
its arrival. Suppose, however, that tachyons are forbidden~as
well as all other means for changing the metric with viola
ing what we call below ‘‘utter causality’’!. The main result
of the paper is the demonstration of the fact that even un
this condition the answer to the above question is posit
Moreover, in some cases~when global hyperbolicity is vio-
lated! eventD can be lessened.

II. CAUSAL CHANGES

A. Changes of space-time

In this section we make the question posed in the Int
duction more concrete. As the point at issue is the effe
caused bymodifying the (four-dimensional) world~that is, by
changing its metric or even topology!, one may immediately
ask, Modifying from what? To clarify this point first not
that though we treat the geometry of the world classica
throughout the paper~that is, we describe the world by
space-time, i.e., by a smooth Lorentzian connected glob
inextendible Hausdorff manifold! no special restrictions are
imposed for a while on matter fields~and thus on the right-
hand side of the Einstein equations!. In particular,it is not
implied that the matter fields (or particles) obey any spec
classical differential equations.

Now consider an experiment with two possible results
Example 1.A device set on a spaceship first polarizes

electron in they direction and then measures thex compo-
nent of its spinsx . If the result of the measurement issx
511/2, the device turns the spaceship to the right; otherw
it does not.

Example 2.A device set on a~very massive! spaceship
tosses a coin. If it falls on the reverse the device turns
spaceship to the right; otherwise it does not.

Comment.One could argue that example 2 is inadequ
since~due to the classical nature of the experiment! there is
actuallyonepossible result in that experiment. That is inde
the case. However, let us~i! assume that before being toss
the coin had never interacted with anything and~ii ! neglect
the contribution of the coin to the metric of the world. O
course, items~i! and ~ii ! constitute anapproximationand
4760 © 1998 The American Physical Society
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57 4761HYPERFAST TRAVEL IN GENERAL RELATIVITY
situations are conceivable for which such an approxima
is invalid @e.g., item~i! can be illegal if the same coin wa
already used a lot in another experiment involving lar
masses#. We do not consider such situations. At the sa
time if ~i! and ~ii ! are adopted, experiment 2 can well b
considered as an experiment with two possible results~the
coin, in fact, is unobservable before the experiment!.

Both situations described above suffer some lack of
terminism ~originating from the quantum indeterminism
the first case and from coarsening the classical descriptio
the second!. Namely, the spaceship is described now by
body whose evolution is not fixed uniquely by the initial da
~in other words, its trajectory~nonanalytic, though smooth!
is no longer a solution of any ‘‘good’’ differential equation!.
However, as stated above, this does not matter much.

So, depending on which result is realized in the expe
ment~all other factors being the same; see below! our world
must be described by one oftwo different space-times. It is
the comparison between these two space-times that we
interested in.

Notation.Let M1 andM2 be two space-times with a pa
of inextendible timelike curvesEi ,Di,Mi in each~through-
out the paperi , j 51,2). One of these space-times,M1 say,
describes our world under the assumption that we emit
particles at some momentS1PE1 and the other under th
assumption that instead of the particles we launch a sp
ship inS2, whereS2PM2 corresponds in a sense~see below!
to S1. The curvesEi andDi are the world lines of Earth an
Deneb, respectively. We require that the two pairs of po
exist:

Fi[Bd @J1~Si !#ùDi , Ri[Bd @J1~Fi !#ùEi . ~1!

These points mark the restrictions posed by the light bar
in each space-time. Nothing moving with a subluminal spe
in the worldMi can reach Deneb sooner than inFi or return
to Earth sooner than inRi . What we shall study is just the
relative positions ofSi ,Fi ,Ri for i 51,2 when the difference
in the space-timesM1 andM2 is of such a nature~below we
formulate the necessary geometrical criterion! that it can be
completely ascribed to the pilot’s activity afterS.

B. ‘‘Utter causality’’

The effect produced by the traveler on space-time n
not be weak. For example, by a~relatively! small expendi-
ture of energy the spaceship can break the equilibrium
some close binary system on its way, thus provoking
collapse. The causal structures ofM1 andM2 in such a case
will differ radically. If an advanced civilization~to which it
is usual to refer! will cope with topology changes, it ma
turn out thatM1 andM2 are even nondiffeomorphic. So th
space-times being discussed may differ considerably. On
other hand, we want them to be nottoo different.

~a! The pilot of the spaceship deciding inS whether or not
to fly to Deneb knows the pilot’s past and in our model w
would prefer that the pilot’s decision could not change t
past. This restriction is not incompatible with the fact that t
pilot can make different decisions~see the preceding subse
tion!.

~b! The absence of tachyons~i.e., fields violating the pos-
tulate of local causality@2#! does not mean in itself that on
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~located in, say, pointA) cannot act on events lying off one’
‘‘causal future’’ @i.e., off J1(A)#:

~i! Matter fields are conceivable that while satisfying loc
causality themselves do not provide local causality to
metric. In other words, they afford a unique solution to t
Cauchy problem for the metric, not inD1(P) ~cf. Chap. 7 in
@2#!, but in some smaller region only. In the presence of su
fields the metric at a pointB might depend on the fields a
points outsideJ2(B). That is, the metric itself would act a
a tachyon field in such a case.

~ii ! Let M1 be the Minkowski space with coordinate
(t1 ,x1

m) and M2 be a space-time with coordinates (t2 ,x2
m)

and with the metric flat at the regionx2
1.t2, but nonflat

otherwise~such a space-time describes, for example, pro
gation of a plane electromagnetic wave!. Intuition suggests
that difference betweenM1 andM2 cannot be ascribed to th
activity of an observer located in the origin of the coord
nates, but neither local causality nor any other principle
general relativity forbids such an interpretation.

In the model we construct we want to abandon any p
sibility of such ‘‘acausal’’ action on the metric. In othe
words, we want the condition relatingM1 andM2 to imply
that these worlds are the same in events that cannot be c
ally connected toS. This requirement can be called theprin-
ciple of utter causality.

C. Relating condition

In this section we formulate the condition relatingM1 to
M2. Namely, we require thatMi should ‘‘diverge byS’’ ~see
below!. It should be stressed that from the logical point
view this condition is just aphysical postulate.Being con-
cerned only with the relation between two ‘‘possible
worlds, this new postulate does not affect any previou
known results. In defense of restrictions imposed by our p
tulate on Mi we can say that it does not contradict a
known facts. Moreover, in the absence of tachyons@in the
broad sense, see item~i! above# it is hard to conceive of a
mechanism violating it.

Formulating the condition being discussed, we would li
to base it on the ‘‘principle of utter causality.’’ In doing so
however, we meet a circle: To find out whether a point
causally connected toSi we must know the metric of the
space-timeMi , while the metric at a point depends in tur
on whether or not the point can be causally connected toSi .
That is why we cannot simply require thatMi \ J1(Si) be
isometric. The following example shows that this may not
the case even when utter causality apparently holds.

Example 3: ‘‘Hyperjump.’’ Let M1 be the Minkowski
plane withS1 located at the origin of the coordinates and
M2 be the space-time~similar to the Deutsch-Politzer space!
obtained fromM1 by the following procedure~see Fig. 1!.
Two cuts are made, one along a segmentl lying in I 1(S1)
and another along a segmentl 8 lying off J1(S1) and ob-
tained froml by a translation. The four points boundingl ,l 8
are removed and the lower~or the left, if l is vertical! bank
of each cut is glued to the upper~or to the right! bank of the
other. Note that we can vary the metric in the shadow
region without violating utter causality though this regio
‘‘corresponds’’ to a part ofM1\ J1(S1).
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4762 57S. V. KRASNIKOV
To overcome this circle we shall formulate our relati
condition in terms of the boundaries of the ‘‘unchange
regions.

Notation.Below we deal with two regionsNi,Mi related
by an isometryf: N25f(N1). To shorten notation we
shall write sometimesX(1) for a subsetX,N1 andX(2) for
f(X). The notationA!B for pointsA,B will mean that there
exists a sequence$an%,

an~ i !→A, an~ j !→B.

Clearly if APN1, then A!BÞA means simplyB5f(A).
Finally, J[J1(S1)øJ1(S2).

Definition 1. We call space-timesM1 ,M2 diverging by
the event S1 ~or by S2 or simplyby S! if there exist open sets
Ni,Mi , pointsSi , and an isometryf: N1°N2 such that
I 2(S2)5f@ I 2(S1)# and

~QjøQk!ùJÞB ~2!

wheneverQjPBd Nj andQj!QkÞQj .
Comment. In the example considered above the tw

space-times diverged byS. Note the following.~i! The pos-
sible choice ofNi is not unique. The dotted lines in Fig.
bound from above two different regions that can be cho
as N2. ~ii ! A(2)aB(2) does not necessarily implyA(1)
aB(1) . ~iii ! Points constituting the boundary ofN fall into
two types, some have counterparts~i.e., points related to
them by !) in the other space-time and the others do
~corresponding thus to singularities!. It can be shown~see
Lemma 1 in the Appendix! that the first type points form a
dense subset of BdN.

In what follows we proceed from the assumption that
condition relating the two worlds is just that they are d
scribed by space-times diverging byS ~with Ni correspond-
ing to the unchanged regions!. It should be noted, however
that this condition is tentative to some extent. It is not i
possible that some other conditions may be of interest, m
restrictive than ours~e.g., we could put some requiremen
on points of the second type! or, on the contrary, less restric
tive. The latter can be obtained, for example, in the followi
manner. The relation! is reflective and symmetric, but no
transitive. Denote by; its transitive closure~e.g., in the case

FIG. 1. ‘‘Hyperjump.’’ The thick dashed line depicts an allowe
world line of a spaceship.
’
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depicted in Fig. 2,A!” B, but A;B). Now, if we want to
consider topology changes like that in Fig. 2 as possi
produced by the eventS, we can replace Eq.~2! by the
requirement that for any first type pointQPBd Nj ,

@Q#;ùJÞB, ~3!

where@Q#;[$xux;Q%. It is worth pointing out that replac-
ing Eq. ~2! by Eq. ~3! does not actually affect any of th
statements below.

Now we can formulate the question posed in the Introd
tion as follows: Given that the space-timesMi diverged by
an eventS, how will the pointsF2 ,R2 be related to the
points F1 ,R1? @It is understood from now on thatC2ùN2
5f(C1ùN1), whereCi5Di , Ei .#

III. ONE-WAY TRIP

Example 3 shows that contrary to what one might expe
utter causality by itself does not prevent a pilot from hast
ing the arrival at a destination. It is reasonable to suppo
however, that in less ‘‘pathological’’ space-times1 this is not
the case.

Proposition 1.If Mi are globally hyperbolic space-time
diverging byS, then

F1!F2 .

The proof of this seemingly self-evident proposition h
turned out to be quite tedious, so we cite it in the Append

Example 4.Recently it was proposed@1# to use for hyper-
fast travel the metric~I omit two irrelevant dimensionsy and
z)

ds252dt21@dx2vsf ~r s!dt#2. ~4!

1Note that we discuss the causal structure only. So the fact
there are singularities in the space-time from example 3 is ir
evant. As is shown in@3#, a singularity-free space-time can be co
structed with the same causal structure.

FIG. 2. Make cuts along the thin lines on the cylinder at the l
and glue their banks to obtain the ‘‘trousers’’ at the right. T
shadowed regions depictJ1(S). Note that these space-times cann
be considered as diverging byS. If we take, for example, the whole
Mi with the thin lines removed, asNi , then BdN1{B!C, while
neitherB nor C lies in J.
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57 4763HYPERFAST TRAVEL IN GENERAL RELATIVITY
Herer s[ux2xsu, vs(t)[dxs(t)/dt, andxs(t) and f are ar-
bitrary smooth functions satisfying2

xs~ t !5H D at t.T

0 att,0,

f ~j!5H 1 for jP~2R1d,R2d!

0 for j¹~2R,R! .

d, T, andR are arbitrary positive parameters.
To see the physical meaning of the condition of utter c

sality take the Minkowski plane asM1 and the plane en
dowed with the metric~4! asM2 ~we choose the origins to b
Si!. It is easy to see that the curvel[@ t,xs(t)# is timelike
with respect to the metric~4! for any xs(t). So we could
conclude that an astronaut can travel with an arbitrary ve
ity @‘‘velocity’’ here is taken to mean the coordinate veloci
dxa(t)/dt, wherexa(t) is the astronaut’s world line#. All one
needs is to choose an appropriatexa(t) and to make the
metric be of form~4! with xs(t)5xa(t). The distortion of the
space-time in the region$0,x,D, t.0% of M2 will allow
the astronaut to travel faster than one could have done in
flat spaceM1 ~which does not of course contradict Propo
tion 1 since theMi do not diverge byS).

The subtlety lies in the words ‘‘to make the metr
be . . . .’’ Consider the curvel1[@ t,xs(t)1R#, which sepa-
rates the flat and the curved regions. It is easy to see
vs(t).1 when and only whenl1(t) is spacelike. At the
same time Eq.~19! of @1# says that the space immediately
the left of l1 is filled with some matter (G00Þ0).3 The
curvel1(t) is thus the world line of the leading edge of th
matter. We come therefore to the conclusion that to achi
T,D the astronaut has to use tachyons. This possibility
not too interesting: no wonder that one can overcome
light barrier if one can use the tachyonic matter. Altern
tively, in the more general case, when the space-time is n
flat from the outset, a similar result could be achieved wi
out tachyons by placingin advancesome devices along th
pilot’s way and programming them to come into operation
preassigned moments and to operate in a preassigned
ner. Take the momentP when we began placing the device
as a point diverging the space-times. Proposition 1 sh
then that, though a regular spaceship service perhaps ca
set up by this means, it does not help to outdistance the
particles fromM1 in the first flight ~i.e., in the flight that
would start atP).

IV. ROUND-TRIP

The situation with the pointsRi differs radically from that
with Fi since the segmentFR belongs toJ1(S) for sure. So
even in globally hyperbolic space-times there is nothing
prevent an astronaut from modifying the metric so as
moveR closer toS ~note that from the viewpoint of possibl
applications to interstellar expeditions this is far more imp
tant than to shiftF). Let us consider two examples.

2In @1# anotherf was actually used. Our modification, however,
no way impairs the proposed spaceship.

3The case in point is, of course, a four-dimensional space.
-

c-

he

at

e
is
e
-
n-
-

t
an-

s
be
st

o
o

-

Example 5: ‘‘The warp drive.’’Consider the metric

ds252~dt2dx!@dt1k~ t,x!dx#,

where k[12(22d)ue(t2x)@ue(x)2ue(x1e2D)#. Here
ue denotes a smooth monotone function

ue~j!5H 1 atj.e

0 atj,0,

d ande,D being arbitrary small positive parameters.
Three regions can be recognized inM ~see Fig. 3!: the

outside region$x,0%ø$x.D%ø$x.t%, in which the met-
ric is flat (k51) and future light cones are generated
vectors rO5] t1]x and lO5] t2]x ; the transition region,
which is a narrow~of width ;e) strip shown as a shade
region in Fig. 3 in which the space-time is curved; andthe
inside region$x,t2e%ù$e,x,D2e%, which is also flat
(k5d21), but the light cones are ‘‘more open’’ here bein
generated byr I5] t1]x andlI52(12d)] t2]x . The vector
lI is almost antiparallel tor I and thus a photon moving from
F toward the left will reach the linex50 almost inS.

We see thus that an arbitrarily distant journey can
made in an arbitrarily short time. It can look like the follow
ing. In 2000, say, an astronaut, whose world line is shown
a bold dashed line in Fig. 3, starts to Deneb. The astron
moves with a near light speed and the way to Deneb ta
the~proper! time Dta!1600 yr. On the way he or she carrie
out some manipulations with the ballast or with the pass
matter. In spite of these manipulations the traveler reac
Deneb at 3600 only. However, on the way back the trave
finds that the metric has changed and he or she mo
‘‘backward in time,’’ that is, t decreases as Earth is a
proached~though the traveler’s trajectory, of course, isfuture
directed!. As a result, the traveler returns to Earth in 200

Example 6: Wormhole.Yet another way to return arbi
trarily soon after the start by changing geometry is the use
wormholes. Assume that we have a wormhole with a ne
gibly short throat and with both mouths restingnear Earth.
Assume further that we can move any mouth at will witho

FIG. 3. Warp drive.
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4764 57S. V. KRASNIKOV
changing the ‘‘inner’’ geometry of the wormhole. Let th
astronaut take one of the mouths with him or her. If he or
moves with a near light speed, the trip will take only t
short timeDta for the traveler. According to our assump
tions, the clocks on Earth as seen through the throat
remain synchronized with the astronaut’s and the throat
remain negligibly short. So, if immediately after reachi
Deneb he or she returns to Earth through the wormho
throat, it will turn out that he or she will have returned with
DtE'Dta after the start.

Similar things were discussed many times in connect
with the wormhole-based time machine. The main techn
difference between a time machine and a vehicle under c
sideration is that in the latter case the mouth only mo
away from Earth. So causality is preserved and no diffic
ties arise connected with its violation.

V. DISCUSSION

In all examples considered above the pilot, roughly spe
ing, ‘‘transforms’’ an ‘‘initially’’ spacelike ~or even past-
directed! curve into a future-directed curve. Assume no
that one applies this procedure first to a spacelike cu
(AC1B) and then to another spacelike curve (BC2A) lying
in the intact, until then, region. As a result one obtains
closed timelike curve (AC1BC2A) ~see@4–6# for more de-
tails!. So the vehicles in discussion can be in a sense con
ered as ‘‘square roots’’ of time machine~and thus a collec-
tive name space machine—also borrowed from scienc
fiction—seems most appropriate for them!. The connection
between time and space machines allows us to classify
latter under two types.

~i! The first are those leading to time machines with co
pactly generated Cauchy horizons~examples 4–6!. From the
results of@7# it is clear that the creation of a space mach
of this type requires violation of the weak energy conditio
The possibility of such violations is restricted by the s
called quantum inequalities,~QIs! @8#. In particular, with the
use of a QI it was shown in@5# that to create a four-
dimensional analog of our example 5 one needs h
amounts~e.g., 1032Mgalaxy) of ‘‘negative energy.’’ Thermo-
dynamical considerations suggest that this in its turn ne
sitates huge amounts of ‘‘usual’’ energy, which makes
creation unlikely. This conclusion is quite sensitive to t
details of the geometry of the space machine and one c
try to modify its construction so as to obtain more approp
ate values. Another way, however, seems more promis
The QI used in@5# was derived with the constraint~see@8#!
that in a region with the radius smaller than the proper rad
of curvature space-time is ‘‘approximately Minkowski’’ i
the sense that the energy density„to be more precise, the
integral E@l,t0 ,T#[*2`

T ^Tmnumun&(t21t0
2)21 dt, where

l is a timelike geodesic parametrized by the proper timet,
u[]t , andt0 is a ‘‘sampling time’’… is given by essentially
the same expression as in the Minkowski space. So, in
signing space machines, space-times are worth searchin
where this constraint breaks down.

Among them is a ‘‘critical’’ ~i.e., just before its transfor
mation into a time machine! wormhole. Particles propagatin
through such a wormhole again and again experience~re-
gardless of specific properties of the wormhole@9#! an in-
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creasing blueshift. The terms in the stress-energy tenso
sociated with nontrivial topology also experience th
blueshift @10#. As a result, in the vicinity of the Cauch
horizon ~even when a region we consider is flat and is
cated far from either mouth! the behavior of the energy den
sity has nothing to do with what one could expect from t
‘‘almost Minkowski’’ approximation@11#. ~The difference is
so great thatbeyondthe horizon we cannot use the know
quantum field theory, including its methods of evaluating t
energy density, at all@12#.! Consider, for example, the Mis
ner space with the massless scalar field in the confor
vacuum state. From the results of Sec. III B@11# it is easy to
see thatE@l,t0 ,`#52` for any l andt0 and the QI thus
does not hold here.4 Moreover,E@l,t0 ,T#→2` as one ap-
proaches the Cauchy horizon alongl. So we need not actu
ally create a time machine to violate the QI. It would suffi
to ‘‘almost create’’ it. Thus it well may be that in spite of~or
owing to! the use of a wormhole the space machine cons
ered in example 6 will turn out to be more realistic than th
in example 5.

~ii ! Then there are noncompact space machines, as in
ample 3. These~even their singularity free versions; se
@3,13#! do not necessitate violations of the weak energy c
dition. They have, however, another drawback typical
time machines. The evolution of nonglobally hyperbo
space-times is not understood clearly enough and so we
not know how toforce a space-time to evolve in the appro
priate way. There is an example, however~the wormhole-
based time machine@14#!, where the space-time is denude
of its global hyperbolicity by quite conceivable manipul
tions, which gives us some hope that this drawback is a
ally not fatal.
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APPENDIX

Throughout this section we takeMi to be globally hyper-
bolic space-times diverging byS, and (U)J to meanU\ J for
any setU.

Lemma 1.Let O be a neighborhood of a point of BdNj
andON,OùNj be such an open nonempty set that

Bd ONùO,Bd Nj . ~A1!

Then

Bd ON
~ i !ùJ1~Si !ÞB for somei .

Proof.Let j 51 for definiteness. Consider a smooth ma
fold M̃[M2øf8O, wheref8 is the restriction off on ON.
Induce the metric onM̃ by the natural projections

4It is most likely ~see Sec. IV of@7#! that the same is true in the
four-dimensional case as well.
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p i : M2°
p1

M̃ , O°
p2

M̃

~or, more precisely, byp i
21) thus makingM̃ into a Lorent-

zian manifold andp i into isometrical embeddings.M̃ must
be non-Hausdorff since otherwise it would be a space-t
and so~asM2 M̃ ) M2 would have an extension in contra
diction to its definition. So pointsQi exist:

Q1!Q2, Q1PBd O~1!
N ùO, Q2PBd O~2!

N ~A2!

and the lemma follows now from Definition 1 coupled wi
Eq. ~A1!. j

Lemma 2.If both A( i ) lie in (Ni)J , then so doI 2(A( i )).
Proof. Mi are globally hyperbolic. So any pointP has

such a neighborhood~we shall denote it byVP) that, first, is
causally convex, i.e.,J2(x)ùJ1(y),VP for any points
x,y: yPJ2(x,VP), and, second, lies in a convex norm
neighborhood ofP. Now suppose the lemma were false. W
could find then such a pointA8PI 2(A( i ) ,Ni) ~let i 51, for
definiteness! that

WÞI 2~A8,VA8!,

whereW[I 2(A8,N1ùVA8). Denote BdWùI 2(A8,VA8) by
]W. Clearly BÞ]W,N1̄. So let us consider the two pos
sible cases~see Fig. 4!.

(i) ]W,” Bd N1. Under this condition a pointC and a
sequence of causal curves$gn% from A8 to pointscn exist
such that

gn,W, cn→CP]WùN1 .

According to @15#, Proposition 2.19, there exists a caus
curveg connectingA8 andC, which is limit for $gn% and is
lying thus in W̄. Since VA8 belongs to a normal conve
neighborhood andCPI 2(A8,VA8), g by @2#, Proposition
4.5.1 is not a null geodesic and hence

g,” N1 ~A3!

FIG. 4. Case~i! of Lemma 2. The white area does not belong
N1 and the darkest area isW. If instead of the larger area bounde
by a dashed line we take the smaller one asVA8, we get case~ii !.
e

l

~otherwise by@2#, Proposition 4.5.10 and by causal conve
ity of VA8 we could deform it into a timelike curve lying in
N1ùVA8, while C¹W).

Now note that for anyC8PI 2(C,N1) there exists a sub
sequence$gk% lying in I 1(C8,N1). So by Eq.~A3! a se-
quence of points$bm% and a pointB1 can be found such tha

bm→B1PBd N1 , bmPI 2~A8,N1!ùI 1~C8,N1!.
~A4!

Thus thef(bm) lie in a compact setJ2(A(2)8 )ùJ1(C(2)8 )
and therefore

f~bm!→B2: B1!B2 .

From Definition 1 it follows that at least one of theBi lies in
J1(Si) and sinceBiPI 2(A( i )) we arrive at a contradiction.

(ii) ]W,Bd N1. In this case takingO5I 2(A8,VA8) and
ON5W in Lemma 1 yields

W~ i !ùJ1~Si !ÞB for somei ,

which gives a contradiction again sinceW( i ),I 2(A( i )). j

Consider now the setsLi[$xuI 2(x),Ni%. They have a
few obvious features

Li5Int Li , Int Li,Ni , ~A5!

A~1!P~L1!J ⇔ A~2!P~L2!J . ~A6!

Combining Lemma 2 with Eqs.~A5! and ~A6! we obtain

~Bd Li !J,Bd Ni . ~A7!

Lemma 3.(Li)J5(Mi)J .
Proof.Since (Mi)J is connected and (IntLi)J is nonempty

@e.g., from Definition 1I 2(Si),(Int Li)J] it clearly suffices
to prove that (BdLi)J5B. To obtain a contradiction, sup
pose that there exists a pointAP(Bd L1)J and letU be such
a neighborhood ofA that

Ū,~M1!J .

Then forUL[UùInt L1 it holds that

U ~ i !
L ùJ1~Si !5B, i 51,2.

On the other hand, because of Eqs.~A5! and ~A7! we can
takeO5U andON5UL in Lemma 1 and get

U ~ i !
L ùJ1~Si !ÞB for somei ,

which is a contradiction. j

Corollary 1. @ I 1(E2)J#5f$@ I 1(E1)#J%.
Proof of Proposition 1. Mi is causally simple. Hence a

segment of null geodesic fromSi to Fi exists. By@2#, Propo-
sition 4.5.10 this implies that any pointP( i )P(Ei)J can be
connected toFi by a timelike curve. Hence a pointP8
P(Di)J can be reached fromP( i ) by a timelike curve without
intersectingJ1(Si). Thus Fi is the future end point of the
curveDi8 :

Di8[Dù@ I 1~Ei !#J .

At the same time from Corollary 1 it follows thatf(D18)
5D28 . j
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